性一交一乱一A片熟女巜迷情酒店,办公室挺进少妇双腿间视频,激烈的性高湖波多野结衣,少妇我被躁爽到高潮A片李秀英

市場(chǎng)銷售咨詢

027-82302765

文章
  • 文章
搜索
首頁 >> 客戶關(guān)愛 >>行業(yè)新聞 >>行業(yè)資訊 >> 剛剛,AI醫(yī)械注冊(cè)審查指導(dǎo)原則發(fā)布(附全文)
详细内容

剛剛,AI醫(yī)械注冊(cè)審查指導(dǎo)原則發(fā)布(附全文)

时间:2022-03-10     【转载】   阅读

來源:國.家藥監(jiān)局器審中心

剛剛,國.家藥監(jiān)局器審中心發(fā)布《人工智能注冊(cè)審查指導(dǎo)原則》,全文如下:

人工智能醫(yī)療器械注冊(cè)審查指導(dǎo)原則

本指導(dǎo)原則旨在指導(dǎo)注冊(cè)申請(qǐng)人建立人工智能醫(yī)療器械生存周期過程和準(zhǔn)備人工智能醫(yī)療器械注冊(cè)申報(bào)資料,同時(shí)規(guī)范人工智能醫(yī)療器械的技術(shù)審評(píng)要求,為人工智能醫(yī)療器械、質(zhì)量管理軟件的體系核查提供參考。

本指導(dǎo)原則是對(duì)人工智能醫(yī)療器械的一般要求。注冊(cè)申請(qǐng)人需根據(jù)產(chǎn)品特性和風(fēng)險(xiǎn)程度確定本指導(dǎo)原則具體內(nèi)容的適用性,若不適用詳述理由。注冊(cè)申請(qǐng)人也可采用其他滿足法規(guī)要求的替代方法,但需提供詳盡的支持資料。

本指導(dǎo)原則是在現(xiàn)行法規(guī)、強(qiáng)制性標(biāo)準(zhǔn)體系以及當(dāng)前科技能力、認(rèn)知水平下制定的,隨著法規(guī)、強(qiáng)制性標(biāo)準(zhǔn)體系的不斷完善以及科技能力、認(rèn)知水平的不斷發(fā)展,本指導(dǎo)原則相關(guān)內(nèi)容也將適時(shí)調(diào)整。

本指導(dǎo)原則是供注冊(cè)申請(qǐng)人、審評(píng)人員和檢查人員使用的指導(dǎo)文件,不涉及行政審批事項(xiàng),亦不作為法規(guī)強(qiáng)制執(zhí)行,應(yīng)在遵循相關(guān)法規(guī)的前提下使用本指導(dǎo)原則。

本指導(dǎo)原則作為數(shù)字醫(yī)療(Digital Health)指導(dǎo)原則體系的重要組成部分,采用和遵循醫(yī)療器械軟件、絡(luò)安.全、移動(dòng)醫(yī)療器械、醫(yī)療器械人因設(shè)計(jì)、醫(yī)療器械獨(dú)立軟件生產(chǎn)質(zhì)量現(xiàn)場(chǎng)檢查等相關(guān)指導(dǎo)原則的概念和要求。

本指導(dǎo)原則是人工智能醫(yī)療器械的通用指導(dǎo)原則,其他含有或涉及人工智能技術(shù)的醫(yī)療器械指導(dǎo)原則可在本指導(dǎo)原則基礎(chǔ)上結(jié)合具體情況進(jìn)行有針對(duì)性的調(diào)整、修改和完善。

一、適用范圍

本指導(dǎo)原則適用于人工智能醫(yī)療器械的注冊(cè)申報(bào),包括第二類、第三類人工智能獨(dú)立軟件和含有人工智能軟件組件的醫(yī)療器械(包括體外診斷醫(yī)療器械);適用于自研軟件的注冊(cè)申報(bào),現(xiàn)成軟件組件參照?qǐng)?zhí)行,不適用于外部軟件環(huán)境。

本指導(dǎo)原則也可用作人工智能醫(yī)療器械的體系核查參考。質(zhì)量管理軟件若采用人工智能技術(shù)實(shí)現(xiàn)其功能或用途,亦可參考本指導(dǎo)原則的適用要求。

二、主要概念

(一)人工智能醫(yī)療器械

本指導(dǎo)原則所述人工智能醫(yī)療器械是指基于“醫(yī)療器械數(shù)據(jù)”,采用人工智能技術(shù)實(shí)現(xiàn)其預(yù)期用途(即醫(yī)療用途)的醫(yī)療器械。

醫(yī)療器械數(shù)據(jù)是指醫(yī)療器械產(chǎn)生的用于醫(yī)療用途的客觀數(shù)據(jù),如設(shè)備產(chǎn)生的醫(yī)學(xué)圖像數(shù)據(jù)(如X射線、CT、MRI、超聲、、光學(xué)等圖像)、醫(yī)用電子設(shè)備產(chǎn)生的生理參數(shù)數(shù)據(jù)(如心電、腦電、血壓、無創(chuàng)血糖、心音等波形數(shù)據(jù))、體外診斷設(shè)備產(chǎn)生的體外診斷數(shù)據(jù)(如病理圖像、顯微圖像、有創(chuàng)血糖波形數(shù)據(jù)等);在特殊情形下,通用設(shè)備(非監(jiān)管對(duì)象)產(chǎn)生的用于醫(yī)療用途的客觀數(shù)據(jù)亦屬于醫(yī)療器械數(shù)據(jù),如數(shù)碼相機(jī)拍攝的用于皮膚疾病診斷的皮膚照片、健康電子產(chǎn)品采集的用于心臟疾病預(yù)警的心電數(shù)據(jù)等;卺t(yī)療器械數(shù)據(jù)包括醫(yī)療器械數(shù)據(jù)的生成、使用等情況,其中使用情況含單獨(dú)使用醫(yī)療器械數(shù)據(jù),或者以醫(yī)療器械數(shù)據(jù)為主聯(lián)合使用非醫(yī)療器械數(shù)據(jù)(如患者主訴信息、檢驗(yàn)檢查報(bào)告結(jié)論、電子病歷、醫(yī)學(xué)文獻(xiàn)等)。

人工智能是指機(jī)器表現(xiàn)出與人類智能相關(guān)行為的能力,通常是指通過感知周圍環(huán)境做出合理行動(dòng)以達(dá)到預(yù)期目標(biāo)的計(jì)算機(jī)軟件或系統(tǒng)。機(jī)器學(xué)習(xí)是指與人類學(xué)習(xí)行為相關(guān)的人工智能,通常是指通過整理現(xiàn)有數(shù)據(jù)和/或獲取新數(shù)據(jù)以提升性能的計(jì)算機(jī)軟件或系統(tǒng)。機(jī)器學(xué)習(xí)雖是人工智能的子集,但卻為人工智能的核心領(lǐng)域,當(dāng)前二者對(duì)于醫(yī)療器械而言含義基本相同,故本指導(dǎo)原則從醫(yī)療器械安.全有效性評(píng)價(jià)角度出發(fā)對(duì)二者不做嚴(yán)格區(qū)分,統(tǒng)一采用人工智能進(jìn)行表述。

基于非醫(yī)療器械數(shù)據(jù)的醫(yī)學(xué)人工智能產(chǎn)品,或者采用人工智能技術(shù)實(shí)現(xiàn)非醫(yī)療用途和非醫(yī)療器械功能(詳見醫(yī)療器械軟件指導(dǎo)原則)的醫(yī)療器械均非人工智能醫(yī)療器械。醫(yī)學(xué)人工智能產(chǎn)品是否按醫(yī)療器械管理,根據(jù)相應(yīng)分類界定指導(dǎo)原則進(jìn)行判定,必要時(shí)申請(qǐng)醫(yī)療器械分類界定。

(二)人工智能醫(yī)療器械類型

從醫(yī)療器械軟件角度,人工智能醫(yī)療器械可分為人工智能獨(dú)立軟件和人工智能軟件組件,故其類型劃分可參考醫(yī)療器械軟件指導(dǎo)原則相關(guān)維度。

人工智能醫(yī)療器械從用途角度可分為輔助決策類和非輔助決策類。其中,輔助決策是指通過提供診療活動(dòng)建議輔助用戶(如醫(yī)務(wù)人員、患者)進(jìn)行醫(yī)療決策,如通過病灶特征識(shí)別、病灶性質(zhì)判定、用藥指導(dǎo)、治療計(jì)劃制定進(jìn)行輔助分診、輔助檢測(cè)、輔助診斷、輔助治療等,相當(dāng)于用戶的“助手”。反之,僅提供醫(yī)療參考信息而不進(jìn)行醫(yī)療決策即為非輔助決策,包括流程優(yōu)化、診療驅(qū)動(dòng),前者如成像流程簡化、診療流程簡化等,后者如成像質(zhì)量改善、成像速度提高、自動(dòng)測(cè)量、自動(dòng)分割、三維重建等,相當(dāng)于用戶的“工具”。此外,輔助決策和非輔助決策從實(shí)時(shí)性角度均可細(xì)分為實(shí)時(shí)和非實(shí)時(shí),前者風(fēng)險(xiǎn)通常高于后者。

人工智能醫(yī)療器械從功能角度大體上可分為處理功能、控制功能、安.全功能。其中,處理功能又可分為前處理功能和后處理功能,前處理功能是指采集人體解剖、生理信息生成醫(yī)療器械數(shù)據(jù)過程的處理功能,如成像流程簡化、成像質(zhì)量改善、成像速度提高等;后處理功能是指利用醫(yī)療器械數(shù)據(jù)生成診療信息或進(jìn)行醫(yī)療干預(yù)過程的處理功能,如診療流程簡化、自動(dòng)測(cè)量、自動(dòng)分割、三維重建、病灶特征識(shí)別、病灶性質(zhì)判定、用藥指導(dǎo)、治療計(jì)劃制定等?刂乒δ苁侵缚刂/驅(qū)動(dòng)醫(yī)療器械硬件運(yùn)行的功能,如閉環(huán)控制、機(jī)械臂運(yùn)動(dòng)控制等。安.全功能是指保證醫(yī)療器械安.全性的功能,如風(fēng)險(xiǎn)預(yù)警、急?刂频。

人工智能醫(yī)療器械從算法角度具有多種類型劃分維度。從學(xué)習(xí)策略角度可分為有監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí),前者需要對(duì)訓(xùn)練數(shù)據(jù)進(jìn)行標(biāo)注,如線性回歸、邏輯回歸、決策樹、樸素貝葉斯、K近鄰、支持向量機(jī)等經(jīng)典回歸、分類算法,后者無需對(duì)訓(xùn)練數(shù)據(jù)進(jìn)行標(biāo)注,如K均值、主成分分析等經(jīng)典聚類、降維算法,前者對(duì)于數(shù)據(jù)標(biāo)注的要求高于后者。從學(xué)習(xí)方法角度可分為基于模型的算法和基于數(shù)據(jù)的算法,前者采用統(tǒng)計(jì)模型、規(guī)則推理等方法,后者主要采用大數(shù)據(jù)方法,前者對(duì)于訓(xùn)練數(shù)據(jù)量的要求低于后者。從可解釋性角度可分為白盒算法和黑盒算法,前者特征提取需要人為干預(yù),可與現(xiàn)有醫(yī)學(xué)知識(shí)建立關(guān)聯(lián),后者自動(dòng)完成特征提取,難與現(xiàn)有醫(yī)學(xué)知識(shí)建立關(guān)聯(lián),前者可解釋性優(yōu)于后者。

上述類型劃分維度相互交叉,例如:前處理和后處理均可采用不同類型的人工智能算法實(shí)現(xiàn)輔助決策、非輔助決策用途,有監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)既可采用基于模型的算法、基于數(shù)據(jù)的算法,又可采用黑盒算法、白盒算法。同時(shí),同一維度亦不存在嚴(yán)格的劃分界線,例如:在用途方面,通過圖像識(shí)別技術(shù)進(jìn)行流程優(yōu)化則需考慮診療驅(qū)動(dòng)相關(guān)要求,自動(dòng)測(cè)量結(jié)果若為醫(yī)療決策重要指標(biāo)(如血流儲(chǔ)備分?jǐn)?shù)FFR)則屬于輔助決策范疇;在功能方面,控制功能、安.全功能可與處理功能相結(jié)合,前處理過程可包含后處理功能;在算法方面,某些算法既可用于有監(jiān)督學(xué)習(xí)又可用于無監(jiān)督學(xué)習(xí),有監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)可結(jié)合為半監(jiān)督學(xué)習(xí);基于模型的算法亦需數(shù)據(jù)的支持,基于數(shù)據(jù)的算法亦可生成模型;白盒算法和黑盒算法可組合使用成為灰盒算法。

同樣,人工智能醫(yī)療器械從成熟度角度可分為成熟和全新兩種類型,其中成熟是指安.全有效性已在醫(yī)療實(shí)踐中得到充分證實(shí)的情形,全新是指未上市或安.全有效性尚未在醫(yī)療實(shí)踐中得到充分證實(shí)的情形。人工智能醫(yī)療器械的算法、功能、用途若有一項(xiàng)為全新則屬于全新類型,反之屬于成熟類型。

人工智能醫(yī)療器械可同時(shí)采用多種、多個(gè)人工智能算法,在前處理、后處理過程中實(shí)現(xiàn)輔助決策、非輔助決策用途。因此,注冊(cè)申請(qǐng)人需結(jié)合人工智能醫(yī)療器械的預(yù)期用途、使用場(chǎng)景、核心功能以及所用算法的類型特點(diǎn)、技術(shù)特征、組合形式開展相應(yīng)產(chǎn)品質(zhì)控工作,以保證產(chǎn)品的安.全有效性。

(三)人工智能算法更新

人工智能算法特別是基于數(shù)據(jù)的算法,具有快速迭代更新的特性。人工智能算法更新屬于軟件更新范疇,故遵循軟件更新的基本原則及要求:人工智能算法更新若影響到人工智能醫(yī)療器械的安.全性或有效性則屬于重大軟件更新,應(yīng)申請(qǐng)變更注冊(cè);反之,人工智能算法更新若未影響到人工智能醫(yī)療器械的安.全性和有效性則屬于輕微軟件更新,通過質(zhì)量管理體系進(jìn)行控制,無需申請(qǐng)變更注冊(cè),待下次變更注冊(cè)時(shí)提交相應(yīng)注冊(cè)申報(bào)資料。

人工智能算法更新可分為算法驅(qū)動(dòng)型更新和數(shù)據(jù)驅(qū)動(dòng)型更新。其中,算法驅(qū)動(dòng)型更新是指人工智能醫(yī)療器械所用算法、算法結(jié)構(gòu)、算法流程、算法編程框架(詳見后文)、輸入輸出數(shù)據(jù)類型等發(fā)生改變,通常屬于重大軟件更新。此外,算法重新訓(xùn)練即棄用原有訓(xùn)練數(shù)據(jù)而采用全新訓(xùn)練數(shù)據(jù)進(jìn)行算法訓(xùn)練,亦屬于算法驅(qū)動(dòng)型更新。

數(shù)據(jù)驅(qū)動(dòng)型更新是指僅由訓(xùn)練數(shù)據(jù)量增加而發(fā)生的算法更新。數(shù)據(jù)驅(qū)動(dòng)型更新是否屬于重大軟件更新原則上以算法性能評(píng)估結(jié)果(基于相同的測(cè)試集和算法性能評(píng)估指標(biāo))為準(zhǔn),算法性能評(píng)估結(jié)果若發(fā)生顯著性改變則屬于重大軟件更新,即算法性能評(píng)估結(jié)果與前次注冊(cè)(而非前次更新)相比存在統(tǒng)計(jì)學(xué)差異,反之屬于輕微軟件更新。

人工智能醫(yī)療器械其他類型的算法更新、軟件更新以及重大軟件更新判定原則詳見醫(yī)療器械軟件指導(dǎo)原則、醫(yī)療器械網(wǎng)絡(luò)安.全指導(dǎo)原則。

軟件版本命名規(guī)則原則上應(yīng)涵蓋算法驅(qū)動(dòng)型更新和數(shù)據(jù)驅(qū)動(dòng)型更新,明確并區(qū)分重大軟件更新和輕微軟件更新,其中重大軟件更新列舉常見典型情況。軟件版本命名規(guī)則的基本要求詳見醫(yī)療器械軟件指導(dǎo)原則、醫(yī)療器械網(wǎng)絡(luò)安.全指導(dǎo)原則。

三、基本原則

(一)基于算法特性

人工智能技術(shù)從發(fā)展驅(qū)動(dòng)要素角度是基于模型/數(shù)據(jù)和算力的算法,其中模型/數(shù)據(jù)是人工智能技術(shù)的基礎(chǔ),算力是人工智能技術(shù)的保證,算法是人工智能技術(shù)的核心。

由于算力所用計(jì)算資源本身不屬于監(jiān)管對(duì)象,計(jì)算資源的監(jiān)管要求取決于其所屬的計(jì)算平臺(tái)類型。故從監(jiān)管角度出發(fā),人工智能醫(yī)療器械安.全有效性評(píng)價(jià)基于其預(yù)期用途、使用場(chǎng)景、核心功能,以算法特性為核心重點(diǎn)關(guān)注其泛化能力,以模型/數(shù)據(jù)為基礎(chǔ)重點(diǎn)關(guān)注其質(zhì)控情況,同時(shí)從風(fēng)險(xiǎn)管理角度兼顧算力不足與失效的影響。

人工智能算法的類型不同,其算法特性、適用場(chǎng)景也不同,評(píng)價(jià)重點(diǎn)亦有所側(cè)重;同時(shí),不同類型的人工智能算法可組合使用,需結(jié)合各算法特性和算法組合形式進(jìn)行整體評(píng)價(jià)。因此,注冊(cè)申請(qǐng)人需結(jié)合人工智能醫(yī)療器械的預(yù)期用途、使用場(chǎng)景、核心功能選擇與之相適宜的人工智能算法或算法組合,基于算法特性并結(jié)合風(fēng)險(xiǎn)管理開展相應(yīng)驗(yàn)證與確認(rèn)工作。

以深度學(xué)習(xí)為例,其是指通過訓(xùn)練具有多個(gè)隱層的神經(jīng)網(wǎng)絡(luò)而獲得輸入輸出映射關(guān)系的人工智能算法,亦是基于海量數(shù)據(jù)和高算力的黑盒算法,既可用于有監(jiān)督學(xué)習(xí)又可用于無監(jiān)督學(xué)習(xí)。因此,對(duì)于采用深度學(xué)習(xí)技術(shù)的人工智能醫(yī)療器械,基于其預(yù)期用途、使用場(chǎng)景、核心功能,重點(diǎn)關(guān)注其算法泛化能力、數(shù)據(jù)質(zhì)控、可解釋性等問題,同時(shí),深度學(xué)習(xí)若與其他類型的人工智能算法組合使用,還需基于各算法特性重點(diǎn)關(guān)注算法組合的整體評(píng)價(jià)問題。

人工智能新算法研究處于深入發(fā)展階段,如基于小樣本數(shù)據(jù)、基于弱標(biāo)注數(shù)據(jù)、基于非結(jié)構(gòu)化數(shù)據(jù)、黑盒算法透明化等算法。人工智能醫(yī)療器械若使用人工智能新算法,亦需基于算法特性并結(jié)合風(fēng)險(xiǎn)管理開展相應(yīng)驗(yàn)證與確認(rèn)工作,以保證產(chǎn)品的安.全有效性。

(二)風(fēng)險(xiǎn)導(dǎo)向

人工智能醫(yī)療器械的風(fēng)險(xiǎn)水平亦可用軟件安.全性級(jí)別進(jìn)行表述,軟件安.全性級(jí)別越高,其生存周期質(zhì)控要求越嚴(yán)格,注冊(cè)申報(bào)資料越詳盡,同時(shí)由于全新類型的潛在未知風(fēng)險(xiǎn)多于成熟類型,故需結(jié)合成熟度予以綜合考慮,具體要求詳見醫(yī)療器械軟件指導(dǎo)原則。

人工智能醫(yī)療器械的軟件安.全性級(jí)別可基于產(chǎn)品的預(yù)期用途、使用場(chǎng)景、核心功能進(jìn)行綜合判定,其中預(yù)期用途主要考慮用途類型、重要程度、緊迫程度等因素,使用場(chǎng)景主要考慮使用場(chǎng)合、疾病特征、適用人群、目標(biāo)用戶等因素,核心功能主要考慮功能類型、核心算法、輸入輸出、接口等因素。亦可根據(jù)風(fēng)險(xiǎn)管理所確定的風(fēng)險(xiǎn)等級(jí)進(jìn)行判定,軟件安.全性級(jí)別與風(fēng)險(xiǎn)等級(jí)的分級(jí)可以不同,但二者存在對(duì)應(yīng)關(guān)系,因此可根據(jù)風(fēng)險(xiǎn)等級(jí)來判定軟件安.全性級(jí)別,但應(yīng)在采取風(fēng)險(xiǎn)控制措施之前進(jìn)行判定。

人工智能醫(yī)療器械的主要風(fēng)險(xiǎn)從算法角度包括過擬合和欠擬合,其中過擬合是指算法對(duì)于訓(xùn)練數(shù)據(jù)過度學(xué)習(xí)而將非普遍規(guī)律作為重要特征,欠擬合是算法對(duì)于訓(xùn)練數(shù)據(jù)學(xué)習(xí)不充分而遺漏重要特征,均會(huì)降低算法泛化能力。從用途角度,輔助決策主要包括假陰性和假陽性,其中假陰性即漏診,可能導(dǎo)致后續(xù)診療活動(dòng)延誤,特別是要考慮快速進(jìn)展疾病的診療活動(dòng)延誤風(fēng)險(xiǎn),而假陽性即誤診,可能導(dǎo)致后續(xù)不必要的診療活動(dòng);非輔助決策從算法設(shè)計(jì)目標(biāo)能否得以實(shí)現(xiàn)角度,亦可參考輔助決策分為假陰性和假陽性。此外,進(jìn)口人工智能醫(yī)療器械還需考慮中外差異風(fēng)險(xiǎn),如人種、流行病學(xué)特征、臨床診療規(guī)范等差異。

注冊(cè)申請(qǐng)人應(yīng)結(jié)合人工智能醫(yī)療器械的預(yù)期用途、使用場(chǎng)景、核心功能開展風(fēng)險(xiǎn)管理活動(dòng),采取風(fēng)險(xiǎn)控制措施將風(fēng)險(xiǎn)降至可接受水平,并貫穿于人工智能醫(yī)療器械全生命周期過程。

(三)全生命周期質(zhì)控

注冊(cè)申請(qǐng)人應(yīng)結(jié)合質(zhì)量管理體系要求,參考軟件、人工智能相關(guān)標(biāo)準(zhǔn)和良好工程實(shí)踐,建立人工智能醫(yī)療器械生存周期過程,開展與軟件安.全性級(jí)別相匹配的產(chǎn)品質(zhì)量保證工作,將風(fēng)險(xiǎn)管理、可追溯分析貫穿于生存周期全程,形成記錄以供體系核查。

上市前開展充分、適宜、有效的驗(yàn)證與確認(rèn)活動(dòng),保證算法泛化能力滿足用戶需求,識(shí)別可預(yù)見風(fēng)險(xiǎn)并將其降至可接受水平,明確產(chǎn)品使用限制(含技術(shù)限制,下同)和必要警示提示信息。上市后持續(xù)開展算法泛化能力研究,同時(shí)結(jié)合用戶投訴、不良事件和召回等情況識(shí)別前期未預(yù)見的風(fēng)險(xiǎn),并采取有效的風(fēng)險(xiǎn)控制措施將風(fēng)險(xiǎn)降至可接受水平。此外,根據(jù)產(chǎn)品更新需求,經(jīng)評(píng)估后實(shí)施更新活動(dòng),開展與之相適宜的驗(yàn)證與確認(rèn)活動(dòng),保證算法泛化能力持續(xù)滿足用戶需求。

四、人工智能醫(yī)療器械生存周期過程

人工智能醫(yī)療器械生存周期(又稱生命周期)過程可基于軟件生存周期過程予以建立,具體要求詳見醫(yī)療器械獨(dú)立軟件生產(chǎn)質(zhì)量管理規(guī)范及其現(xiàn)場(chǎng)檢查指導(dǎo)原則。

考慮到有監(jiān)督深度學(xué)習(xí)是當(dāng)前人工智能醫(yī)療器械的主流算法,故本指導(dǎo)原則以有監(jiān)督深度學(xué)習(xí)為例詳述人工智能醫(yī)療器械生存周期過程質(zhì)控要求,主要包括需求分析、數(shù)據(jù)收集、算法設(shè)計(jì)、驗(yàn)證與確認(rèn)、更新控制等階段。其他類型的人工智能算法可參照?qǐng)?zhí)行,不適用內(nèi)容詳述理由并予以記錄。

(一)需求分析

需求分析以用戶需求與風(fēng)險(xiǎn)為導(dǎo)向,結(jié)合產(chǎn)品的預(yù)期用途、使用場(chǎng)景、核心功能,綜合考慮法規(guī)、標(biāo)準(zhǔn)、用戶、產(chǎn)品、數(shù)據(jù)、功能、性能、接口、用戶界面、網(wǎng)絡(luò)安.全、警示提示等需求,重點(diǎn)考慮數(shù)據(jù)收集、算法性能、使用限制等要求。

為保證數(shù)據(jù)質(zhì)量和控制數(shù)據(jù)偏倚,數(shù)據(jù)收集需考慮數(shù)據(jù)來源的合規(guī)性、充分性和多樣性,數(shù)據(jù)分布的科學(xué)性和合理性,數(shù)據(jù)質(zhì)控的充分性、有效性和準(zhǔn)確性。數(shù)據(jù)來源在合規(guī)性(如個(gè)人信息保護(hù)法)基礎(chǔ)上保證充分性和多樣性,以提高算法泛化能力,例如:根據(jù)產(chǎn)品的預(yù)期用途和使用場(chǎng)景盡可能多采集數(shù)據(jù),如來源于多家、多地域、多層級(jí)的代表性臨床機(jī)構(gòu),以及多家、多種、多參數(shù)的代表性采集設(shè)備。數(shù)據(jù)分布的科學(xué)性和合理性需結(jié)合目標(biāo)疾病流行病學(xué)特征予以考慮,包括但不限于疾病構(gòu)成(如分型、分級(jí)、分期)、人群分布(如健康、患者,性別、年齡、職業(yè)、地域、生活方式)、統(tǒng)計(jì)指標(biāo)(如發(fā)病率、患病率、**、死亡率、生存率)等情況,以及目標(biāo)疾病并發(fā)癥與類似疾病的影響情況。數(shù)據(jù)質(zhì)控的充分性、有效性和準(zhǔn)確性需結(jié)合數(shù)據(jù)采集與數(shù)據(jù)標(biāo)注的人員、設(shè)備、過程等影響因素予以考慮,具體要求詳見后文。

算法性能需結(jié)合醫(yī)療實(shí)際和產(chǎn)品定位,綜合考慮假陰性與假陽性、重復(fù)性與再現(xiàn)性、魯棒性/健壯性、實(shí)時(shí)性等性能指標(biāo)的適用性及其要求,兼顧不同性能指標(biāo)的制約關(guān)系,如假陰性與假陽性等。同時(shí),結(jié)合當(dāng)前醫(yī)療水平情況,考慮金標(biāo)準(zhǔn)或參考標(biāo)準(zhǔn)的確定依據(jù)、實(shí)現(xiàn)方法和質(zhì)控要求,以保證算法性能評(píng)估的準(zhǔn)確性,必要時(shí)納入數(shù)據(jù)收集過程。

使用限制需考慮產(chǎn)品禁用、慎用等場(chǎng)景,準(zhǔn)確表述產(chǎn)品使用場(chǎng)景,提供必要警示提示信息。

(二)數(shù)據(jù)收集

數(shù)據(jù)收集基于合規(guī)性要求,主要考慮數(shù)據(jù)采集、數(shù)據(jù)整理、數(shù)據(jù)標(biāo)注、數(shù)據(jù)集構(gòu)建等活動(dòng)的質(zhì)控要求,以保證數(shù)據(jù)質(zhì)量和算法訓(xùn)練效果。

1.數(shù)據(jù)采集

數(shù)據(jù)采集需考慮采集設(shè)備、采集過程、數(shù)據(jù)脫敏等質(zhì)控要求,并建立數(shù)據(jù)采集操作規(guī)范。數(shù)據(jù)采集亦可使用歷史數(shù)據(jù),需結(jié)合樣本規(guī)模、采集難度等影響因素合理選擇數(shù)據(jù)采集方式。若適用,數(shù)據(jù)采集需經(jīng)倫理委員會(huì)批準(zhǔn)。

采集設(shè)備質(zhì)控包括采集設(shè)備的兼容性和采集特征等要求。兼容性基于數(shù)據(jù)生成方式(直接生成、間接生成)考慮采集設(shè)備的兼容性要求,如采集設(shè)備的名稱、型號(hào)規(guī)格、制造商、性能指標(biāo)等要求,若無需考慮兼容性要求詳述理由并予以記錄。采集特征考慮采集設(shè)備的采集方式(如常規(guī)成像、增強(qiáng)成像)、采集協(xié)議(如MRI成像序列)、采集參數(shù)(如CT加載電壓、加載電流、加載時(shí)間、層厚)、采集精度(如分辨率、采樣率)等要求。

采集過程質(zhì)控包括人員管理、采集流程、采集質(zhì)量評(píng)估等要求。人員管理考慮采集人員、審核人員的選拔(如職稱、工作年限、工作經(jīng)驗(yàn)、所在機(jī)構(gòu),若有國外人員則需明確其資質(zhì)要求)、培訓(xùn)(如培訓(xùn)材料、培訓(xùn)方案)、考核(如方法、頻次、指標(biāo)、通過準(zhǔn)則、一致性)等要求。采集流程考慮人員職責(zé)、采集步驟、結(jié)果審核等要求。采集質(zhì)量評(píng)估考慮評(píng)估人員、評(píng)估方法、評(píng)估指標(biāo)、通過準(zhǔn)則等要求,并記錄評(píng)估結(jié)果。

數(shù)據(jù)采集若使用歷史數(shù)據(jù),需列明采集設(shè)備及采集特征要求,并開展數(shù)據(jù)采集質(zhì)量評(píng)估工作。

采集的數(shù)據(jù)應(yīng)進(jìn)行數(shù)據(jù)脫敏以保護(hù)患者隱私,數(shù)據(jù)脫敏需明確脫敏的類型(靜態(tài)、動(dòng)態(tài))、規(guī)則、方法以及脫敏內(nèi)容的確定依據(jù)。

脫敏數(shù)據(jù)匯總形成原始數(shù)據(jù)庫,不同模態(tài)的數(shù)據(jù)在原始數(shù)據(jù)庫中需加以區(qū)分(下同)。原始數(shù)據(jù)庫需考慮樣本規(guī)模的充分性、樣本多樣性等問題。

2.數(shù)據(jù)整理

數(shù)據(jù)整理基于原始數(shù)據(jù)庫考慮數(shù)據(jù)清洗、數(shù)據(jù)預(yù)處理的質(zhì)控要求。數(shù)據(jù)清洗需明確清洗的規(guī)則、方法、結(jié)果,數(shù)據(jù)預(yù)處理需明確處理的方法(如濾波、增強(qiáng)、重采樣、尺寸裁剪、均一化等)、結(jié)果。數(shù)據(jù)整理所用軟件工具(含腳本,下同)均需明確名稱、型號(hào)規(guī)格、完整版本、制造商、運(yùn)行環(huán)境,并進(jìn)行軟件確認(rèn)。

數(shù)據(jù)經(jīng)整理后形成基礎(chǔ)數(shù)據(jù)庫,需明確樣本類型、樣本量、樣本分布等信息。樣本類型以適用人群為單位可分為單一數(shù)據(jù)、數(shù)據(jù)序列(由多個(gè)單一數(shù)據(jù)組成,如結(jié)構(gòu)序列、功能序列、時(shí)間序列)。樣本量需考慮樣本規(guī)模的充分性,明確樣本總量及其確定依據(jù)。樣本分布需考慮樣本的科學(xué)性和合理性,依據(jù)適用人群、數(shù)據(jù)來源機(jī)構(gòu)、采集設(shè)備、樣本類型等因素明確疾病構(gòu)成的數(shù)據(jù)分布情況。

3.數(shù)據(jù)標(biāo)注

數(shù)據(jù)標(biāo)注作為有監(jiān)督學(xué)習(xí)數(shù)據(jù)質(zhì)控的關(guān)鍵環(huán)節(jié),需建立數(shù)據(jù)標(biāo)注操作規(guī)范,明確標(biāo)注資源管理、標(biāo)注過程質(zhì)控、標(biāo)注質(zhì)量評(píng)估等要求。

標(biāo)注資源管理包括人員管理和基礎(chǔ)設(shè)施管理。人員管理考慮標(biāo)注人員、審核人員和仲裁人員的選拔(如職稱、工作年限、工作經(jīng)驗(yàn)、所在機(jī)構(gòu),若有國外人員則需明確其資質(zhì)要求)、培訓(xùn)(如培訓(xùn)材料、培訓(xùn)方案)、考核(如方法、頻次、指標(biāo)、通過準(zhǔn)則、一致性)等要求;A(chǔ)設(shè)施管理考慮標(biāo)注場(chǎng)所(真實(shí)場(chǎng)所或模擬場(chǎng)所,模擬場(chǎng)所可根據(jù)產(chǎn)品實(shí)際情況調(diào)整模擬程度,詳述調(diào)整理由并予以記錄)、標(biāo)注環(huán)境條件(如空間、照明、溫度、濕度、氣壓)、標(biāo)注軟件(名稱、型號(hào)規(guī)格、完整版本、制造商、運(yùn)行環(huán)境、軟件確認(rèn))等要求。

標(biāo)注過程質(zhì)控包括人員職責(zé)(如人員資質(zhì)、人員數(shù)量、職責(zé)分工)、標(biāo)注規(guī)則(如臨床指南、專家共識(shí)、專家評(píng)議、文獻(xiàn)分析)、標(biāo)注流程(如標(biāo)注對(duì)象、標(biāo)注形式、標(biāo)注輪次、標(biāo)注步驟、結(jié)果審核)、分歧處理(如仲裁人員、仲裁方式)、可追溯性(如數(shù)據(jù)、操作)等要求。

標(biāo)注質(zhì)量評(píng)估包括評(píng)估人員、評(píng)估方法、評(píng)估指標(biāo)、通過準(zhǔn)則等要求,并記錄評(píng)估結(jié)果。

數(shù)據(jù)經(jīng)標(biāo)注后形成標(biāo)注數(shù)據(jù)庫,樣本類型可分為數(shù)據(jù)塊(如圖像區(qū)域、數(shù)據(jù)片段)、單一數(shù)據(jù)(由多個(gè)數(shù)據(jù)塊組成)、數(shù)據(jù)序列(由多個(gè)單一數(shù)據(jù)組成)。標(biāo)注數(shù)據(jù)庫的樣本量、樣本分布等要求及風(fēng)險(xiǎn)考量與基礎(chǔ)數(shù)據(jù)庫相同。

數(shù)據(jù)標(biāo)注可使用自動(dòng)標(biāo)注軟件,但自動(dòng)標(biāo)注結(jié)果不得直接使用,應(yīng)由標(biāo)注人員審核后方可使用;同時(shí),自動(dòng)標(biāo)注軟件亦需明確名稱、型號(hào)規(guī)格、完整版本、制造商、運(yùn)行環(huán)境等信息,并進(jìn)行軟件確認(rèn)。

4.數(shù)據(jù)集構(gòu)建

基于標(biāo)注數(shù)據(jù)庫構(gòu)建訓(xùn)練集(用于算法訓(xùn)練)、調(diào)優(yōu)集(若有,用于算法超參數(shù)調(diào)優(yōu))、測(cè)試集(用于算法性能評(píng)估),明確訓(xùn)練集、調(diào)優(yōu)集、測(cè)試集的劃分方法、劃分依據(jù)、數(shù)據(jù)分配比例。訓(xùn)練集原則上需保證樣本分布具有均衡性,測(cè)試集、調(diào)優(yōu)集原則上需保證樣本分布符合真實(shí)情況,訓(xùn)練集、調(diào)優(yōu)集、測(cè)試集的樣本應(yīng)兩兩無交集并通過查重予以驗(yàn)證。

為解決樣本分布不滿足預(yù)期的問題,可對(duì)訓(xùn)練集、調(diào)優(yōu)集小樣本量數(shù)據(jù)進(jìn)行擴(kuò)增,原則上不得對(duì)測(cè)試集進(jìn)行數(shù)據(jù)擴(kuò)增,對(duì)抗測(cè)試(詳見后文)除外。數(shù)據(jù)擴(kuò)增需明確擴(kuò)增的對(duì)象、范圍、方式(離線、在線)、方法(如翻轉(zhuǎn)、旋轉(zhuǎn)、鏡像、平移、縮放、濾波、生成對(duì)抗網(wǎng)絡(luò)等)、倍數(shù),在線擴(kuò)增亦需予以記錄,擴(kuò)增需考慮數(shù)據(jù)偏倚的影響及風(fēng)險(xiǎn),如部分?jǐn)?shù)據(jù)擴(kuò)增倍數(shù)過大、數(shù)據(jù)擴(kuò)增倍數(shù)不均衡等。若采用生成對(duì)抗網(wǎng)絡(luò)(詳見后文)進(jìn)行數(shù)據(jù)擴(kuò)增,需明確算法基本信息以及算法選用依據(jù)。

數(shù)據(jù)經(jīng)擴(kuò)增后形成擴(kuò)增數(shù)據(jù)庫,需列表對(duì)比擴(kuò)增數(shù)據(jù)庫與標(biāo)注數(shù)據(jù)庫在樣本量、樣本分布(注明擴(kuò)增倍數(shù))等差異,以證實(shí)擴(kuò)增數(shù)據(jù)庫樣本量的充分性以及樣本分布的合理性。

(三)算法設(shè)計(jì)

人工智能算法作為人工智能醫(yī)療器械的核心,其設(shè)計(jì)主要考慮算法選擇、算法訓(xùn)練、算法性能評(píng)估等要求。對(duì)于黑盒算法,算法設(shè)計(jì)應(yīng)開展算法性能影響因素分析,同時(shí)建議與現(xiàn)有醫(yī)學(xué)知識(shí)建立關(guān)聯(lián),以提升算法可解釋性。

1.算法選擇

算法選擇提供所用算法的名稱、類型(如有監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí),基于模型、基于數(shù)據(jù),白盒、黑盒)、結(jié)構(gòu)(如層數(shù)、參數(shù)規(guī)模)、輸入輸出數(shù)據(jù)類型、流程圖、算法編程框架、運(yùn)行環(huán)境等基本信息,并明確算法選用依據(jù),包括選用的理由和基本原則。

若組合使用集成學(xué)習(xí)、遷移學(xué)習(xí)、強(qiáng)化學(xué)習(xí)等,亦需提供算法基本信息以及算法選用依據(jù)。

2.算法訓(xùn)練

算法訓(xùn)練需基于訓(xùn)練集、調(diào)優(yōu)集進(jìn)行訓(xùn)練和調(diào)優(yōu),考慮評(píng)估指標(biāo)、訓(xùn)練方式、訓(xùn)練目標(biāo)、調(diào)優(yōu)方式、訓(xùn)練數(shù)據(jù)量-評(píng)估指標(biāo)曲線等要求。

評(píng)估指標(biāo)建議根據(jù)用戶需求進(jìn)行選擇,輔助決策可選擇敏感性、特異性等指標(biāo),非輔助決策可選擇圖像質(zhì)量、測(cè)量準(zhǔn)確性等指標(biāo)。訓(xùn)練方式包括但不限于留出法和交叉驗(yàn)證法,若組合使用聯(lián)邦學(xué)習(xí)亦需明確算法選用依據(jù),并提供算法基本信息。訓(xùn)練目標(biāo)根據(jù)醫(yī)療情況詳述目標(biāo)確定依據(jù),提供受試者工作特征(ROC)曲線或其衍生曲線、混淆矩陣及其衍生參數(shù)等證據(jù)予以證實(shí)。調(diào)優(yōu)方式明確優(yōu)化策略和實(shí)現(xiàn)方法。訓(xùn)練數(shù)據(jù)量-評(píng)估指標(biāo)曲線用于證實(shí)算法訓(xùn)練的充分性和有效性,若無法提供則需詳述理由并提供替代證據(jù)。

3.算法性能評(píng)估

算法性能評(píng)估作為軟件驗(yàn)證的重要組成部分,需基于測(cè)試集對(duì)算法設(shè)計(jì)結(jié)果進(jìn)行評(píng)估,綜合考慮假陰性與假陽性、重復(fù)性與再現(xiàn)性、魯棒性/健壯性、實(shí)時(shí)性等適用評(píng)估要求,以證實(shí)算法性能滿足算法設(shè)計(jì)目標(biāo),并作為軟件驗(yàn)證、軟件確認(rèn)的基礎(chǔ)。亦可基于第三方數(shù)據(jù)庫開展算法性能評(píng)估。

同時(shí),開展算法性能影響因素分析以提升算法可解釋性,詳述影響算法性能的主要因素及其影響程度,如采集設(shè)備、采集參數(shù)、疾病構(gòu)成、病變特征等因素,基于分析結(jié)果明確產(chǎn)品使用限制和必要警示提示信息。

此外,根據(jù)產(chǎn)品實(shí)際情況開展壓力測(cè)試、對(duì)抗測(cè)試等測(cè)試,以全面深入評(píng)估算法性能。

(四)驗(yàn)證與確認(rèn)

1.軟件驗(yàn)證

軟件驗(yàn)證是指通過提供客觀證據(jù)認(rèn)定軟件開發(fā)、軟件更新某一階段的輸出滿足輸入要求,包括軟件驗(yàn)證測(cè)試(單元測(cè)試、集成測(cè)試、系統(tǒng)測(cè)試)、設(shè)計(jì)評(píng)審等系列活動(dòng)。

軟件驗(yàn)證基于軟件需求予以開展,保證軟件的安.全有效性,并作為軟件確認(rèn)的基礎(chǔ)。

2.軟件確認(rèn)

軟件確認(rèn)是指通過提供客觀證據(jù)認(rèn)定軟件滿足用戶需求和預(yù)期目的,包括軟件確認(rèn)測(cè)試(用戶測(cè)試)、臨床評(píng)價(jià)、設(shè)計(jì)評(píng)審等系列活動(dòng)。根據(jù)產(chǎn)品實(shí)際情況,軟件確認(rèn)方式可單一使用,亦可組合使用。

軟件確認(rèn)測(cè)試基于用戶需求,由預(yù)期用戶在真實(shí)或模擬使用場(chǎng)景下予以開展,亦可基于測(cè)評(píng)數(shù)據(jù)庫(詳見后文)予以開展。

臨床評(píng)價(jià)基本原則詳見醫(yī)療器械軟件指導(dǎo)原則,基于核心功能或核心算法,結(jié)合預(yù)期用途和成熟度予以綜合考慮:非輔助決策類功能基于核心功能開展同品種醫(yī)療器械比對(duì),全新的功能、算法和用途原則上均需開展臨床評(píng)價(jià);輔助決策類功能基于核心算法開展同品種醫(yī)療器械比對(duì),所選同品種醫(yī)療器械的臨床證據(jù)原則上需基于臨床試驗(yàn)(含回顧性研究,下同),全新的功能、算法和用途原則上均需開展臨床試驗(yàn)。具體要求詳見醫(yī)療器械臨床評(píng)價(jià)等通用指導(dǎo)原則,以及人工智能醫(yī)療器械臨床評(píng)價(jià)等專用指導(dǎo)原則。

同時(shí),開展算法性能比較分析,若各類測(cè)試場(chǎng)景(含臨床評(píng)價(jià))算法性能變異度較大,詳述原因并基于分析結(jié)果明確產(chǎn)品使用限制和必要警示提示信息。

**后,結(jié)合算法訓(xùn)練、算法性能評(píng)估、臨床評(píng)價(jià)等結(jié)果開展算法性能綜合評(píng)價(jià),針對(duì)訓(xùn)練樣本量和測(cè)試樣本量過少、測(cè)試結(jié)果明顯低于算法設(shè)計(jì)目標(biāo)、算法性能變異度過大等情況,對(duì)產(chǎn)品的適用范圍、使用場(chǎng)景、核心功能進(jìn)行必要限制。

(五)更新控制

人工智能醫(yī)療器械若發(fā)生算法更新、軟件更新,均應(yīng)當(dāng)按照質(zhì)量管理體系的要求,開展與算法更新、軟件更新的類型、內(nèi)容和程度相適宜的驗(yàn)證與確認(rèn)活動(dòng),將風(fēng)險(xiǎn)管理、可追溯分析貫穿于更新全程,形成記錄以供體系核查。

對(duì)于算法更新,無論算法驅(qū)動(dòng)型更新還是數(shù)據(jù)驅(qū)動(dòng)型更新,均應(yīng)開展相應(yīng)驗(yàn)證與確認(rèn)活動(dòng),如算法性能評(píng)估、臨床評(píng)價(jià)等,以保證算法更新的安.全有效性。對(duì)于軟件更新,具體要求詳見醫(yī)療器械軟件指導(dǎo)原則、醫(yī)療器械獨(dú)立軟件生產(chǎn)質(zhì)量現(xiàn)場(chǎng)檢查指導(dǎo)原則。

此外,算法更新、軟件更新均需考慮引入回滾機(jī)制,以保證醫(yī)療業(yè)務(wù)的連續(xù)性,特別是對(duì)風(fēng)險(xiǎn)較高的軟件。

總之,人工智能醫(yī)療器械所含的每個(gè)人工智能算法或算法組合,均需獨(dú)立開展需求分析、數(shù)據(jù)收集、算法設(shè)計(jì)、驗(yàn)證與確認(rèn)、更新控制等活動(dòng),同時(shí)考慮人工智能算法組合的整體評(píng)價(jià)要求,以保證產(chǎn)品的安.全有效性。

前期已開發(fā)的人工智能醫(yī)療器械若不滿足本指導(dǎo)原則的適用要求,應(yīng)開展差距分析并予以記錄,明確產(chǎn)品使用限制和必要警示提示信息。必要時(shí)采取補(bǔ)救措施,以滿足質(zhì)量管理體系要求,并保證產(chǎn)品的安.全有效性



編輯:小黃

聯(lián)系我們

武漢市東湖新技術(shù)開發(fā)區(qū)光谷大道62號(hào)關(guān)南福星醫(yī)藥園7幢7層1-8

027-82302765(市場(chǎng)銷售咨詢)

steadlive@foxmail.com

關(guān)注我們

微信掃一掃

關(guān)注公眾號(hào)

在线客服
- 護(hù)理師小紫
  • 點(diǎn)擊這里給我發(fā)消息
技术支持: 微客界智能建站 | 管理登录
seo seo